v_2 of the $J/\psi \to \mu^+\mu^-$ using the "subtraction method"

Catherine Silvestre

PWG: Heavy Light Run-7 Au+Au,
$$\sqrt{s} = 200$$
 GeV AN 669

Plenary session

January 27, 2008

Pt integrated [0,5]GeV/c

opposite RxnP

opposite rixin				
centrality	рт	$\textit{v}_{2}^{\mathrm{true}}(south)$	$v_2^{ m true}({\sf north})$	$v_2^{ m true}({\sf average})$
[20, 40]	[0, 5]	$0.16 \pm 0.112 \pm 0.007$	$-0.14 \pm 0.150 \pm 0.006$	$0.03 \pm 0.089 \pm 0.001$
[40,60]	[0, 5]	$0.35 \pm 0.153 \pm 0.011$	$-0.01\pm0.164\pm0.000$	$0.18 \pm 0.108 \pm 0.004$
[20, 60]	[0, 5]	$0.20 \pm 0.091 \pm 0.009$	$-0.11 \pm 0.117 \pm 0.005$	$0.06 \pm 0.072 \pm 0.002$
Difference North South Jarger than 2-				

Difference North South larger than $2\sigma...$

both	RxnP			
centrality	рт	$v_2^{ m true}({ m south})$	$\textit{v}_{2}^{\mathrm{true}}(north)$	$\mathit{v}_{2}^{\mathrm{true}}(average)$
[20, 40]	[0, 5]	$0.17 \pm 0.088 \pm 0.007$	$-0.07\pm0.126\pm0.003$	$0.08 \pm 0.072 \pm 0.003$
[40,60]	[0, 5]	$0.30 \pm 0.140 \pm 0.010$	$0.04 \pm 0.112 \pm 0.001$	$0.15 \pm 0.085 \pm 0.005$
[20, 60]	[0, 5]	$0.20 \pm 0.072 \pm 0.009$	$-0.03 \pm 0.094 \pm 0.001$	$0.10\pm0.058\pm0.004$

same	RxnP			
centrality	рт	$v_2^{\mathrm{true}}(south)$	$v_2^{ m true}({\sf north})$	$v_2^{ m true}({\sf average})$
[20, 40]	[0, 5]	$0.03 \pm 0.106 \pm 0.001$	$0.03 \pm 0.158 \pm 0.001$	$0.02 \pm 0.089 \pm 0.001$
[40,60]	[0, 5]	$0.09 \pm 0.157 \pm 0.003$	$0.02 \pm 0.157 \pm 0.001$	$0.06 \pm 0.111 \pm 0.001$
[20, 60]	[0, 5]	$0.05 \pm 0.094 \pm 0.002$	$0.03 \pm 0.123 \pm 0.001$	$0.04 \pm 0.075 \pm 0.001$

North and South are compatible.

Pt integrated [1,5]GeV/c

opposite RxnP

opposite term				
centrality	рт	$v_2^{\mathrm{true}}(\mathrm{south})$	$v_2^{ m true}({\sf north})$	$v_2^{ m true}({\sf average})$
[20, 40]	[1, 5]	$0.19 \pm 0.109 \pm 0.008$	$-0.19\pm0.176\pm0.008$	$0.07 \pm 0.092 \pm 0.002$
[40, 60]	[1, 5]	$0.35 \pm 0.167 \pm 0.011$	$-0.04 \pm 0.178 \pm 0.001$	$0.14 \pm 0.124 \pm 0.003$
[20, 60]	[1, 5]	$0.23 \pm 0.078 \pm 0.010$	$-0.16 \pm 0.137 \pm 0.007$	$0.16 \pm 0.066 \pm 0.005$

Difference North South even worse...

both	KxnP			
centrality	рт	$v_2^{\mathrm{true}}(south)$	$v_2^{\mathrm{true}}(north)$	$v_2^{ m true}({\sf average})$
[20, 40]	[1, 5]	$0.23 \pm 0.099 \pm 0.010$	$-0.20\pm0.142\pm0.008$	$0.04 \pm 0.083 \pm 0.002$
[40,60]	[1, 5]	$0.32 \pm 0.123 \pm 0.010$	$0.10 \pm 0.130 \pm 0.003$	$0.21 \pm 0.090 \pm 0.007$
[20,60]	[1, 5]	$0.26 \pm 0.076 \pm 0.012$	$-0.12 \pm 0.113 \pm 0.005$	$0.09 \pm 0.065 \pm 0.004$

same RxnP centrality $v_2^{\rm true}$ (south) $v_2^{\rm true}(north)$ $v_2^{\rm true}$ (average) рт $0.13 \pm 0.103 \pm 0.005$ $-0.01 \pm 0.173 \pm 0.000$ $0.04 \pm 0.091 \pm 0.001$ [20, 40] [1, 5] $0.10 \pm 0.120 \pm 0.002$ [40, 60][1, 5] $0.23 \pm 0.162 \pm 0.007$ $-0.00 \pm 0.175 \pm 0.000$ [20, 60] [1, 5] $0.14 \pm 0.091 \pm 0.006$ $-0.02 \pm 0.137 \pm 0.001$ $0.04 \pm 0.077 \pm 0.001$

Discussion

Comments

• As expected (knowing v_2 for [0,1]GeV/c) the difference North / South doesn't fade away (on the contrary) when integrated over [1,5]GeV/c instead of [1,5]GeV/c

What has been double/tripple checked:

- Signal is good enough in the pt-integrated bins
- There is no bug when summing the bins, when fitting, nor when accessing the RxnP information
- However if you look at the yields vs. ϕ - ψ in North arm and the resulting fits, it has the opposite shape to what is expected ($v_2 > 0$) and differente from what's going on for South arm (which is physically not possible)

Lets have a look at the yields in 6 bins in ϕ - ψ between $[-\pi,\pi]$

[20,40%] [1,5]GeV/c opposite Rxnp

Catherine Silvestre

 v_2 of the $J/\psi \to \mu^+ \mu^-$ using the "subtraction method"

within errors...

Still, v_2 are compatible between arms

6.192 / 4

φ-ψ (deg

[40,60%] [1,5]GeV/c opposite Rxnp

|y| ∈ [1.2, 2.2]

0.1

opposite RxnP

same patern as previous centrality bin.

Discussion

North arm...

- The yields should have about the same amplitude symetrically around 0. This is not the case for North arm... where points seem more close for bins 3 and 5, and 2 and 4 than 3 and 4, and 2 and 5... Do we have a shift? What's going on?
- One could think that it's because the mass fits are worse since there is less signal:

```
"silvestr/afs/muons/source/DimuonMixer/macros/v2_macros/postscripts/v2/signal/
```

```
signal_oppositeRxnp_cent4-12_pt4-20_ncent3_pt1_phi6.ps
```

- However the error propagation should account for it and thus, the v2 integrated over p_T should be the same as when there is more signal (like when looking at 3 bins between $[0,\pi]$) in the end.
- This is the case : the v_2 final values between 3 and 6 bins are very close.
- This also confirms that the summing of the ϕ - ψ bins is done properly.

Lets have a look at the different RxnP configuration and the shape of the fit

[20,60%] [1,5]GeV/c opposite (top) vs. same (bottom)

Discussion

Bias from one RxnP?

- If the issue was the RxnP detector we are using, than the north arm yields should behaved better for either the opposite or the same configuration (and oppositly for South arm).
- This doesn't seem to be the case and only North yields do not follow the $cos2(\phi-\psi)$ fit.

I include all plots of [1,5]GeV/c and 6 phi bins in the following slides. You can find other plots here:

/afs/rhic.bnl.gov/phenix/users/silvestr/muons/source/DimuonMixer/macros/v2_macros/postscripts/v2/

If anyone has ideas about things we could do to understand better, please brainstrom!

It's hard to beleive the North arm points are correct as they are... this is not physical.

[20,40%] [1,5]GeV/c both Rxnp

Catherine Silvestre

0.2

 ${
m v_2}$ of the ${
m J}/\psi
ightarrow \mu^+\mu^-$ using the "subtraction method"

10

physics...

[40,60%] [1,5]GeV/c both Rxnp

[20,60%] [1,5]GeV/c both Rxnp

both RxnP

[20,40%] [1,5]GeV/c same Rxnp

[40,60%] [1,5]GeV/c same Rxnp

Catherine Silvestre

 v_2 of the $J/\psi \to \mu^+\mu^-$ using the "subtraction method"

[20,60%] [1,5]GeV/c same RxnP

Catherine Silvestre